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1	 V

NECESSARY CONDITIONS FOR CONTINUOUS PAIW.M- TER

STOCHASTIC OPTIMIZATION PROBUMS

H. J. Kushner

1. Introduction.._._.r..r .. _..,

This paper applies the abstract variational theory of NeustPdt

[1] to obtain a stochastic maximum principle. Since the papers cf

Kushner on the stochastic maximrrn principle [2], [3], a number of

developments were reported in . -odeau [4], Baum [5], Fleming [61,

Sworder [71 - [8]. The versatile mathematical programming ideas

were not 'used explicitly in [2] - [8], and, with relative ease, we

are able to handle greater varieties of state space constraints then

treated in the references. A discrete parameter analog of the

discrete maximum principle of Halkin [9] and Holtzman [10] appears

in Kushner, [11]. Even in the deterministic ease, the ability to handle

general constraints with relative ease gives the programming approach a

distinct advantage over more direct approaches.

It is premature to assert that the stochastic maximum principle

will be useful in providing any deep understanding of stochastic

control problems. Nevertheless, it seeras likely that the implicit

geometric framework (at least in the programming approach) will

suggest some useful approximation, or numerical procedures. The results

may serve as a departure point fo:;: a perturbation analysis as in the

formal work [12], and the nature and interpretation of the random
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multipliers may shed additional light on the physical interpretation

of the derivatives (weak or strong) of the minimum cost function

which appears in the dynamic programming formulation for a fully

Markovian problem. These various, points are under current, iEivestiga-

tion for both the present work and [11]. Even for an initially

Markovian problem, dynamic programming is not always applicable when

there are state space constraints, and the alternative programming

formulation may be useful to shed light on the control problem. For

a discussion, for an elementary stochastic control problem of the

relationship between randomized controls and 'singular arcs' see [13].

The problem formulation and mathematical background is Liven

in Section 2. A required result of Neustadt is stated in Section 3,

the linearized equations are discussed in Section 4. Section 5 derives

a certain convex cone. The maximum principle is stated in Section 6.

The development in Sections 4-6 is for the open loop case and extension.;;

are discussed in Section 7.

2. Problem Formulation and Mathematical. Background.

Assumptions.

Let z(t), 0 < t < T be a vector valued normalized Brownian motion

on the probability triple (SZ,P(•),.^), where n is the sample space,

and P(•) the measure on the a-algebra	 on n. For the vector

X = (xl, ...,xr) and matrix 0 _ (9 i j ; i, rj = 1, ..., }, define the

Euclidean norms 
lh 2 = Z Ixil 2 ♦ I0 2	

Z CP	 The control systemi	 i,

N.



I

3

of concern is the stochastic differential equation (1) on + the time

interval [0,T]

(1) dx(t) = f(x(t),u(w,t),t)dt + a(x(t),t)dz(t).

where z and x are n + 1 vectors, and x(t) = (x O(t))...,xn(t))

where x(0) is independent of z(t) - z(s), t > s > 0, and also

Ejx(0) I2 < co. Write c = [QO, ...,an,, where a  is the ith column of

o. We may write (1) as

(2) dx(t)	 f(x(t),u(w,t)It)dt + 3  i(x(t),t)dzi(t).

The cost is defined to be cpO (x (•) )

(3) CPo(x(•)) = ExO (T) + Eh(xT),

and we impose the vector constraints

+Usually the w argument of a random variable or function is omitted,

and sometimes, Tihen we write the differential form (1), the t

argument will also be omitted. Also the prime ' on x' denotes

transpose.
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ro(x(•)) = Ero (X (0 ))	 0

qo (x(-)) = Ego (x(0),Ex(0)) < 0

(4)	 qi (x (-)) = Egi (x (t i ) ) EX (ti )) < 0, i = 1, ... ,k , 0 < ti < ti+l < T.

rT (x(-)) = ErT (x(T),EK(T)) = 0, qT (x(.))

EgT (x(T),EX(T)) < 0.

It is assumed that (4) Implies that x0 (0) = 0. As W scussed below

more general constraints can be treated. Let u(w,t) and x(w,t)

denote the optimal control and the corresponding trajectory, resp.

Assume

•	 N

(1-1) The family of admissible controls °1G is the collection

of measurable random functions u(co,t) with values in the set Q0t

at each t e [0,T]. For each t, u(w,t) is measurable with respect

to the data a-algebra .^'1t, which is non anticipative with respect

to the z(s) process. The initial condition x(0) is measurable
N

over Ro and E	
7

x(0) ` <	 Let	 contain at least one other

point beside 4.

(I_2) The f (x, u, G) and o f (x ) t) are Borel functions

of their arguments, and are differentiable with respect to the

components of x, and satisfy a growth condition of the type

lf(x,u,t )'j G Ko (l+Ixl 2) y lQi (x,t)1 2 < Ko (l+Ix, 2)^ uniformly in

U e ^ZGt and t. The function f(x,u,t) is continuous at each (x,u),

uniformly in t. The Jacobians fx (x, u,t) and Qi x (x, t) are uniformly

bounded.

`t

l
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(I-3) For each t e (0,T] and -q
t measurable and St 

valued

variable, there is a 8(t) > 0 so that for each 8 < 8(t) there is a

random variable ut -8 with the property that ut-8 is measurable over

each .9s and has values in each Ms where s e [t-8,t] and

(5)	 f(Xtt),ut,t) - f(x(t),ut-8, t) -► o

in probability as 8 >0. Both ut_8 and 8 may depend on u t and t.

Note. The condition of the last paragraph is included since

we will use piecewise constant and non-anticipative perturbations

to the optimal control. It asserts that the effect of any control

u  which is admissible at time t can be approximated by a control

ut-8 which is admissible at any point in the small interval Ct-8,t].

(I-^)

Iq,(x (ti))I < Ko(1+E l x (ti)1 2),	i = O,l,...,k,T

I ri(x (t i))I < xo(1+EIx(ti)12),

The gi (x,e) and ri (x,e) and h(x) are Borel functions whose

first derivatives with respect to each argument exist. Write

qi,x^ qi, e^ rip X) ri, 
a for the Jacobians of qi (x, e) and ri (x, e)

with respect to the first and second arguments (x and e) evaluat.ed

at x = x(t i), e = A(ti). Write hx :For the gradient of h(x) evaluated

at x(T) .
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Suppose that the qi(x(.)) and ri(x(•)) (evaluated at ^(ti)) and

Eh(xT) (evaluated at xT) have Frechet derivatives gi) Ri) Hp reap. ) of

the form
A	 A

Qiv = E[gi'x .v + gi'e•Ev]

Riv = E[ri ) x •v + gi a
 e•Ev]

A
Hv = EhX•v

where v is an arbitrary (n+l) vector with square integrable

components. I.e., the Qi) Ri and H are continuous linear

(vector or scalar valued) functionats on the space of square

integrable random variables, [since q  and r  depend only on

x(ti), the Frechet derivative is appropriate] anti, e.g.

e E[gi (x(ti) + ev, S(ti) + Eev) - gi(x(ti),E2(ti))3 -> Qi.v

as a -*0 uniformly for v in any bounded set (v: EI vI 2 < a < W).

The components of each of the vector valued linear functionals Ri

are linearly independent.

a

(I-5) Let qi 
= (gli,...j,qi i )', For the inactive+ inequality

constraints qi(x) ) suppose that there is some e i > 0 so that

+qJ4
i is active at x	 q(-) if J

3.
(x(•)) = 0. Otherwise, it is said to

be inactive.

r	 .

..w
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gi(x(t i ) + v) < 0

for E,v`2 < F i . For the active constraints qi(x) suppose that there

is a square integrable vi so that for each i and active qi,

Q .vi < 0

where Qi is the Frechet derivative of the constraint component; qi(x)

at X^(ti) .

3. A Variational Result of Neustadt.

For future reference, we describe a variational result of

Neustadt [1]. Let 9" denote a locally convex topological space

which contains the set Q.
o.

µ
Definition. Let Pµ denote the set (P: 0i > 0, E p i < 1). Leti=i
K be a convex set in 9 which contains (0) and some point other

than (0). Let wl,.. . ,w, be in K and let N be an arbitrary

neighborhood of (0). Let there exist an c o > 0 (depending on

W,11 and N) so that, for each a in (0, eo], there is a

continuous map E(^) from PJ4 to .9^ with the property

µ
to (p ) C ( E (^ Piwi + N)) n Q
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Then K is a first order convex approximation to Q.

A 'Basic Optimization. Problem.

Let _T contain the set Q'. Find the element w in Q'

which minimizes the real valued function ga o (w) subject to the real

valued constraints cpi(w) = O,i = 1,...,p, gP_i(w) 	0, 1	 1,...,^.

We say that w is a local solution to the optimization problem (or,

more loosely, the optimal solution) if, for some neighborhood N of

(0) 0  > cpo(w) for all w in w + N which satisfy the con-

straints. Let w denote the optimal solution. The constraints

(P-i forwhich CP-i a (P-i (yt) = 0 are called the active constraints.

Define the set of indice3 J = (i:cp_ i (w) = 00 i > 0) U (0).

R.'he Basic Necessary Condition for Optimality.

First we collect some assumptions

(II-1) The gp i (w), i > 1, are continuous at w. There

are continuous and linearly independent functi.onals ,^...,.^
IA 

for

which [,Ti (w+ ewn) - cp 
i 
(w) ] /e ,2 i (w) -> 0 as a -^ 0 and for any

bounded sequence wn ->w in 5.

(II-2) There is a neighborhood N of (0) in .g so

that for all inactive constraints, we still hAve q) -i (vl w < 0 for

weN.

(II-3) Let the active constraints and also (p o be con-

tinuous at w. For the active constraints, let



^^_i( +Ewn ) • ga_ i (w)J/ -4 ci(w)

as a -> 0, for any bounded sequence w n -+ w in .^, where ci(w)

is a continuous and convex functional.. There is some w and some

j c J for which ai (w) > 0. There is a w for which c  (w) < 0

for all j e J.

A case of particular importance is where the differentials

c i (w) are linear functionals. Then the next to last sentence of

(II-3) is implied by the last sentence of (II-3).

We now have a particular case of (Neustadt [1], Theor m

'	 4.2). The local or optimal solution here is called a totally regular

x	 local solution in [1].

Theorem 1. Assume  (II-1 - II-3). Let  w be a local solution to

the optimization problem. Then there existsa l,..., µ,pGO,a_1,...,C_P
mom

not all zero with a 10 for i > 0 so that

9
E ai Ji (w) + Z a isi(w) < Q

i=1	 ieJ -

fo^ w in T. wh....e_ K 
is a first order convex approximation

to Q , _ w = Q. and K is the closure of K in .9;

Remark. Let cpi ( • ) =— 00 1 > 0. If there is a w e K for

which ci (w) < 0 for all active J. then ao < 0, and we can set

ao = -^.

I
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identification with the Stochastic Co.,trol Problem.

For the problems of the sequel we define ,J' to be tihe

locally cenvex linear topological space of (n+l) dimensional

random functions v with values v(w ) t), where v  -► 0 in _F

if and only if

Elvn(wot)l2 -40

for each t in [0,T]. The set Q' is defined to be the set of

solutions++ x(m t) to (1) for all admissible controls, and .initial.

conditions satisfying EIx(0)l 2 < •o, xo(0) : 0, and x(0) in-

dependent of z(t) - z(a), t > s > 0. The constraints (qi} are

identified with the (cp - j, A > 0) and the (r3) with the (^  I > 0) .

Also To a Exo (T) + Eh(xT). x is the optimal element of 	 and

Conditions (I-1) - (I-8) imply (II-1) - (II-3).

With the framework of constraints (4), we can include con-
ti

straints such as E j gi (x(s))ds < di and can approximate
o	 -m

constraints such as P(x (t) a A) < di, where A has a smooth

+ It is easiest to work in the since of random functions _y; as it is

described above. By (I-1) 0 (I-2), we lose nothing by altering .J so

that n ^ 0 if E j vn (w, t) p -+0 for any p = 2. in this case the

quadratic estimates (1 .4) on qi and ri can be replaced by

g:L'(x(ti)) ( e go(l+Elx(tl) j p), etc. More Seneral situa'cions are

obviously possible and, in particular, the Lipschitz and growth
condition on the zeroeth component of f(x,u,t) can be relaxed.

++x,x or v are elements of 	 Notation will be abused by also

using either of x (tN x (w, t) for the element of ^^ as well as
for the values of the element.

/'
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boundary. More general inequality constraints than (4) can be included,

once the appropriate linear or convex di^^"`-.entialas ci (see II-3) are

calculated.

4. The Linearized Equations.

Consider the equations (6) and (7), where 0 < T < t < T,

is fixed and O (t, T) is an (n+l) X (n+l) matrix+

(6) dy(t) = fx•y(t)dt +	 dzi(t)JiPxy(t),

(7) dm (t, T) = fxO (t, T)dt +	 dzi (t)aci xm (t : T),i
where @(T, .) = I, the identity, and Ely(T) I2 < co and y(T) is

independent of z(t) - z(s), for all t > e > T. Both (6) and (7) have

unique continuous (in t) solutions, with finite mean square values. A

version of O(t,T) is measurable in (t,co) for each T. By uniqueness,

for each T e [0,T], w.p.l.)

0 (t , T) y ( T) = Y 

and, for t > T1 > T, w.p.l.,

0 (t, Tl) O (T1, T) = 0(t) T) .

+fx denotes fx(x(t),u(t.,t), etc.
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Furthermore ) O(t^T) is mean square continuous in T. uniformly

in t e [TT]. Indeed ' we have w.p.l ' that 0(t ' T+e) and 0(t,T)

are the solutions of (7) which start at time T + e with initial

values I and m(T+E ' T'), resp. By known estimates for solutions

of stochastic differential equations, for real Kip

Elo(T+e, T) - I14 < Kle2

and, hence, for t in [ T+e, T]

(8)	 Ejm(t,ti+e) - 0(t) T)[ 4 < K2e2.

Equation (8) implies that there is a continuous version of O(T,T)

(Proposition 111.5.3 of [141) (T is the parameter). Finally, if

ECy(0) 12
	

0(e2) (or o (e2 ) ), then E^ y(t) 1 2	 0(e2) (or o (e2)) •

This last fact will be used frequently in Theorem 2.

5. The Convex Cone K.

We will require the following lemma.+

Lemma 1. Assume (I-1) - (I-2). Let the measurable function O(W,t)

be Lebesgue integrable on [0, T] for almost all fixed co. Then

The proof of Lemma 1 resulted from a discussion with W. Fleming.

'i



13

t
F(w,t)	 f 0(cu,$)ds

t0

is differentiable with respect to t on an (wt) set of full

measure with derivative O(w t). Thus there is a null set

Ti C (0,T) so that, for each fixed t ^ Ti, F(wt) is differentiable

with derivative O(w t) w.P.l. xW-partiaulsr `' ' 'for O(M,$)

havef(x(s))u(s), s) and wiy 'saaars' ai, we

t+e%

e f	 f(x(s),u(s), $ )ds - (%+ai)f(x(t),u(t),t) -^ 0
t-eat

w. .l. for any t not in some null set Ti.

There is a null set T2 C (0,T) so that for t ^ T2 a. nd

any random variable u,

t+ eox

ef
	 f(X(s),u,$)ds - (a2+al)f(x(t),u,t) -+ 0

t-eal

W. P .1.

Proof. Define

t+a2r

Fr (w, t)= r f	 0 (w, s) ds,
t-alr

where r is rational in [0,1]. There is a null w set No so

i
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that, for to No, 0 ((0,t) is Lebesgue integrable on [0,T] and,

hence for co No

Fr (w, t) - (a1+%) (V (w, t) -* 0

for almost all t (the null t set depending on (U). Also

Fr(w,t) converges to (al+a2 ) 0(w)t) on a measurable set

B C (n-1^) x CO O T] as r-0. If Fr (w, t) converges as r 0 through
the nationals, it converges to the same limit as r -+ 0 through any

sequence.

The Lebesgue measure of the fixed w sections of S (for

w ^ No) is T. Hence by Fubin ;i's theorem, the me ^-unable set S

has full measure. Thus. there is a null t set T. so that for

t A Tl, Fr (uo,t) -+ 
(al+ao) ,c (cp t) w.p.l. The statements of the

first paragraph of the lemma follow from this.

Let g(v,t) denote a Borel function which is continuous at each

V. uniformly in t. Let g(jr(t),t) be integrable on [O,T] for

any continuous v(t). Then there is a null set T2 so that, for

t A T2,

t+ea2

Ef 	 g(v(s), s)ds - (ajl %)g(v(t),t) ->O
t-eal

.

as a -*0, for any continuous function v(s). The second paragraph

of the lemma follows from, this by letting f(x(u),t),u((u))t) _



_ ^D(t,0)ox(0),
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g(v(t,w),t), where v(cot) _ (x(w,t),u(cu)) and noting the continuity

(in (x,u)) properties of f(x,u,t) which were assumed in (I_2). Q.F.D.

The Convex Cone K.

Define the elements 8xs u of , ^" (with values 8xs u (cu, t),

sometimes written as 8x s u (t)), for s	 = Ti u T2 (see Lemma 1

for the definition of Ti)

8xsu(t) =0,	 0 < t < s < T
r

	

= m(t:	 s,$) - f(X(s),u(s),$)]

T>t>s,

where us is a R measurable random variable with values in mss.

Define the set K as the convex cone (in ,9` ) containing elements

of the type

d
	K = (8x: 8x = c0 5x 0  + E c

i8xs	;ci arbitrary, real, non-negative;

d arbitrary, finite),
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where 5x(0) is independent of z(t) - z(s), all t > s > 0, and

E16x(0)l 2 < w. By Thecrem 1, K is a first order convex approxima-

tion to the set Q' - (x) = Q.

Theorem 2. Assume (I-1 - 1-3).

approximation to	 k}.

Then K is a first order convex

Proof. Define the set A = { A = (No)	 ,7%M) : Ti > 0, E 7%i < '..} .

Let U ...,8xm denote any m elements of K. Then, writing

U  for us ,

i	 q	 qN	 iSx	 E pij 8xs u^ ^+ E Pij Sxo
J=1	 P
	

=1

for some set of Pi j , ^ i j , and sets

Sxo(t) = 0(t,0)8 0. We assume that

K, the convex hull of (0, Sx , ..., 8.

and conversely, and has the form

ul, ..., uq, sl, ..., s q,and

s i < si+l' Any element in

P), corresponds to some N e A

mm N
S	 Z (^	 ax	 ) + z Ai (^ P i ax 0

J )_ 	 St (A) 8x	 +
i=l i J =1 i^ sJ ) uj 	 i=1 J=1	 J=1	 s, u

St (h)Sxo

J=1

M	 m
Std (T) = E p i? Ai, 8ti (A) = E pi jTi.

	

i	 J=1

.
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Note that Ot i (N) = St i (eN) for any scalar € > 0, and similarly

for Sti(l). Let 0(e2) denote any random function v^ for which
EIVC M I 2 = O(€2 ) for t € [0,T], and write v	 o(E2)

if E'vE (t)+
2
 = o(E2) for each t e (O,T]. To prove the theorem we

must show that there is an e  > 0 so that, for each e < €o, there

is a continuous map te(N) from A into -F of the fora

(9)	 te(7.) = x + e5xN + Pe A

where pE A = 0(E2).

Next, a perturbed control and initial conlition will be

described. Suppose first that the s i are distivat and s i T +^ T  U T2.

Define T = sup Bti (N) a q, and
i ) TEA

Ii (EA) _ (t: si - EBti (A) < t < si).
am

so that for

Si - ET > 0,

ned by

Define the

There is an e  > 0

distinct, (ii): all

where 8(s) is defi

control u  at si,

E < 
e  

we have (i): the Ii (eN) are

(iii): ET < min [8(sl),,..,$(sq)],

and B(s i) corresponds to s i and

perturbed control uET(t)

(10)	 uET(t) = u(t)j t	 U Ii(EA)
i

us i -ET, t e Ii(a),
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where us
i - ET 

corresponds to us by (I-3), and as a -+ 0 0 (5) of
i

(I-3) holds.

If the s i are not distinct, we follow the method for the

deterministic problem (16) and define

Ti = 8ti (T) + ... + Btq(A) if si = 6 1+1 ,.. = sq

Ti = 8ti (A) + ... + 8tr (A) if si = si+1 .. = sr < sr+lp r < q,

Ii (EA) = (t: s i - ETi < t	 si - ETi + E8ti(A))

_ (t: si - E(8ti (A) + ,.. + btr(A))

< t < si - E(8t i+1 (A) + •'• + 8tr(A)).
Ono 

'

	

	 Then define uEA (t) as in (10) , Thus, if some s i are identical,

the intervals are shifted to the left.

By (I-1) and (I-3), the u
EA 
(t) is admissible. Let x 

E 
A e ,y de-

Mote the solution of (1) for control uEA (t) and initial condition

(11)	 (0) + E zX 	 St (A) Bxo (0) = X(o) + EBxA(o) = X6.(0)
J=1

EW111W	 = sxEA(o) .

Define

•t

k

.
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(1' )

	

cc 
(N)= xCN,

Fix e' in (O l eo). ltt N(n) -+ N in A. Then Ej x0^ (n) (0) -

x e7% (0)l 2 -^ 0. and the total length of the intervals on which

ueT(n) (t) u e?P) converges to zero. These- facts imply that

Ejxe?,(n)(t) - x eT (t)l 2 -► 0 for each t. which implies the continuity of

t e (a) for eaca e < e 0 We need only prove the expansion (9), and this

will be done in three parts.

10 . Let K  denote real numbers.

(13^.)	 dx.(t) = f (X (t ), u(t),t)dt +	
dzi (t)°`i (AX (t),t)

(lab)	 axe^(t) = f (xe,(t),ue-,(t),t)dt + dzi (t )Qi (xe? (Nlt)

(13^)	 dyen(t) = Xye
.X(t)dt + [f(X(t),ue^,(t),t) - f(X(t),u(t),t)]

+ Z dz j (t) Agj$X 'e-X(t)
j

yex(0) = 8xe -X(0)'= e8x-X(0).

Using standard estimates it can be sho-dn that, for some K 1 < 00:

(14)	 max E max lxe^(t)^ 2 < Ki.
e<eo, Af^ O<t<T

Next., we show that



(15)	 EIx(t)12 H EIX(t) - xE^(t)I = 0(E^)

uniformly in t. Equation (15) holds for t = 0. Assume it holds

for t = to' and that u,.,(t) = u(t) fcr t e [ too t,]. We will

show that (15) holds uniformly In [toil]. Then, if (15) holds at

t = a  - ep, we show that it holds uniformly in [ s i- epo si] o for

any real p for which s i - Ep > 0. These two feete imply (15) es

asserted. Let x(t) = x E,(t) - x(t). Then'

t
x(t) = x(to) + f [f(xET (s),u(s) o s) - f(x(s),u(s),$)]ds

t 
t

+ t [°(xEI1(S)' ^) " a (x ( s ), s)]dz(s),
0

where Elx(t0 
)1 2 = O(E2). By standard estimates using the Lipschitz

condition

E 1 X(t) 1
2 

<	 1 X(0)1 2 +	 f tEl X ( 0 ) I gds
am K2	 N2 t

0

which implies (15) in [too t,]. Next, write

t

X(t)	 X(s i" Ep) + f	 [f (xEA(s)'us^(s)'s) _ f(X(s)'u(s)'s )]ds
t s i- FP

t'
. ^	 + f	 [Q(xEh(s)'s) _ a (x (s ), s) ]dz(s) .

si-EP

..W

20
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Using the Lipschitz condition on o, and Schwarz's inequality on the

drift term, gives
t

Elx(t) 1 2 < K3EIx(s i - CP) 2 + K3t j	 E[f(xe?'(s)PueT(s),$) -
si-eP

t
u(s),$)]?ds +K3 f	 17	 2ds.

si -EP

Using (14) and the growth condition (fi 2 < K° (l+1x, 2) in (1-2) gives

Elx(t)1 2 < K3EIx(s i - EP 2 + F-4 t2 + I(3 tf	 E1X(s 2 d
si-ep

from which (15) follows in [aCepfsi].

r By reasoning close to the foregoing, it can be shown that

(16)	 EIyew(t)12 = O(e2)

uniformly in t e [OPT).

2°. Next, it will be shown that

(l7)	 EIxex(t) - 2(t) - yEx(t)l 2 = o(e2)

by the method used to show (15). suppose u(t) = ue,(t) in

t e [to,tl] and (17) holds for 	 = to. Write y(t) = xe,(t) -

x(t) - ya(t). Then, for t e [to,tl],
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Y(t) " (to)  + It [ f (X (s),uts),$) - ftXts),u(s),$) -	 y(s)w's t	 E?1	 X
O

t
•	 +	 E dz1 ( 11 ) [ 01 (X N ( s ) , $ ) - 01 (X ( s ) , 3 )	 Qi txy,X(s)]

of

(la)	 =  t	 ty(t ) + ! 
0 ? 

"y(s)ds + f 

0 1

dz (OS y( s ) + el (t)  + e (t),o	 t x	 t	 ^	 ^,x 
	 2

where, for x(s) a x(s) - x(s),

t
el (t) = f [ X(X ( z ) + q) (s)x(s),u(s),$) - fX(X(s),u(s),$) ]x( s)ds

t 
t

s2 (t) a f	 dz^( s )[ QJP x (x ( s ) + ^ts)x(s),$) - QJ^ X(x(s),a)Jx(s)
t0

where q) (s) and (P (s) are; scalar valued random functions with

values in [0,1]. By (15) and the continuity (in x) and bounded-

ness properties of fx (x )u, s) and ai x (x) s),
,

Elei(t)12 = o(e2)

uniformly in t. With this estimate (17) easily follows from (18) in [to,tl]'

Next write ati (?^) = pi and let El y(si-eri) 2 o (E2).

For t e [si-eTi,si-ey ep i] write

..•-



t

F.
r	 '

^3

t

(19) Y(t)	 Y( s i-'cTi ) + 1	 [f(xE^(s)^uE^(s),8) - f(x(s),u(S),$)ai. ETi

•	 _ f YEX(s)]ds

t

	

f	 [f(x(auE^(sa) - f(x(s)^u(s)^8)]ds
ai-ET„

t+
 ^

dzj ( s ) C Oi (xE-A( s ) , $ ) - ai (x(s),$) - CriJqxYET(s)]

i
- ET 

ii

	

'	 (19? can be written as

t
(20) y(t) = y(s i -ETi) + 1	 ^f(xEA(s)^uEA(s)^s) 	 f(X(s)^uEA(s),$)]s -ET

	

.•^	 i	 i

t

	

+ 1	 E dz (s)[e (x (s), $) - a (X ( s ),,Q)] + e (t)

	

si-ETi	

E^	 3

	

t ,.	 t
e3(t)	 fxYEA(s)ds + f	 dz^(s)l7i ,YCN(S)I.

	

s i-ETi	
si

-ETi

.a

kY^
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Using El yE?,(s) 2 Z 0(E) uniformly in s we get, for t in the

desired interval,

Elf 	 Z dz (s)oi,X  YE^ (s)	 ^^2 	ft	 lY
ET

 (s)l 2ds - o(e2),
8 -ET ,^	 ^	 s -ETi i	 i	 i

and similarly for the first term of e 3 (t). Using this and the

estimates for the two integrals in (20),

t

El f 	 dzi ( s ) [ Q^ (X e?' ( s ), s ) - Q j (X ( s ), s ) ] l 2 +
s i-ETi i
t

•	 Elf	 [f(XEA(s), uET(s),$) - f(X(s),uET(s),$)]dsj2
si-ETi	 ^

t

< K5 f	 Ex (s) 2d s,

si-ETi

and (15), gives (17) in [ si-ETi, s i ,-ETi + Epi ] .

3°. To complete the proof, it only remains to show that

(21)	 El ya(t) - bxex (t) l 2 = o (E2)

(21) holds for t = 0, and indeed, (21) is zero for

t e [O,sl- ETl]. If (21) holds at to, then it is true in [to,tl]

if uEX(t) = u(t) in [to, tl], since w.p.l
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Next, for t s [s i-ETi, s i-ET i + Epi], where pi = 8ti(T),

(^3)	 YEA(t) - YEA(8i
-ETi) + Ji (t )	 O(E2)

where

t
J^(t) z f	 [f(x(s),uE^(s),$) - i'(x(s),u(s), $)]ds

si-ETi

Let J^ = Ji(e i-ETi+Epi). Sf YE (to) YE^(to) + o(E2), and

uEX(t) = u(t), t E Ito,tl], then, w.p.l.,

owl	 'W

YeN(tl) _ 
11(tv to)ye?Po) + o(E2)

Furthermore, Ei i i (t) l 2 = 0(e2) uniformly in t, and O(t-ePl, 'r-q2) ->

" 0(t T) in probability as E -+0, for any constants cpl,CP2.

The last paragraph implies that w.p.l., for t 	 U I0(E?^),

`	 where I0(eN) is the interior of I, W),

(24' 	 Y (t) = E ^(t, S )Je + m(t,O)8x .X (o) + ?( E2 ) .
EA	

t>s	
i i	

e

i

Define

si- ETi+Epi

Ji = f	 [f (x ( s ), ui, s ) - f (X(s),u(s), s ) ]ds.
s i- ETi

x
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Then (I-3) implies that EIJi-J
i l 2 = o(E2). Thus (24) is valid for

Ji replacing Ji. By Lemma 1, (letting	 + Pi, al = Ti)

Ep 
Ji -> f (x ( s i)) ui^ s i) - f (X(si),u(si), si)

i

w.p.l. as E -0.

Thus, for t A UIi(eTj)

ye-A (t) = e E O (t) s i ) 8ti (T) [ f (x ( s i ) , ui , s i ) - f (x(si),u(si), s i ) ]
t>si

(^5)
	 + 0(t,0)Bxex(0) + ZO2)

...+-

8x x(t) + O( E2) .

Since the sets I°i (eX)	 decrease to the empty set as	 a ->0, (25)

holds for all t e [ 0, T] .	 Q.E.D.

6. The Maximum Principle.

Combining Theorems 1 and 2 we get Theorem 3• Define the column vector

P = (1 ) 0 .,	 0)'. Theorem 3 reduces the Pontriagin maximum principle, if the

noise is absent (Cr = 0) .

Theorem- 3. Ash (I-1) (1-5). There are continuous (in t)

versions of t) ), t), (ti, t) (for t < T and t < ti, r_. ) .

There is a scalar 6 < 0, vectors ai < 0, 1 = 0,1, ..., k, T, (non-

positive c'anponents ai) where_ ai = 0 if qJ (x) < 0, and vectors
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bo,bT, not all zero, so that for almost all t e [0,T] and all admissible

u(t), and _o measurable 8x(0) satisfying E)8x(0) ( 2 < oo, (26) holds, w.p.l.

(26a) E®[ P+hx(X(T))]'O(T)t) + F E ai[gi)x+Egi^e]O(ti)t)
ti>t

+ EbT[rT x ErT e]O(T't) f(x
	

(t)
(t), u (t) , t ) - f(x,u(t),t)
	 < 0

(26b) E8[P+hx(XT	
i

)]'^(T,0) +	 aiE[gi^x+Egi,e]'D(tiPO)

+ bTE[rT X ErT e ]O(T )0) + bo 
[ro x Ero 

e  8x(0) < 0
>	 >	

,	 ,

(26b) implies that the term in brackets is zero. Define the vector

p(T) by its transpose (27)

(27)	 P'(T) = 9[P+hx(x(T))]' + bT[rTx+ErT e ] + al[gT x+EqT e ]1	 ,	 f	 ,

Define, where to a 0,

(2$)	 P°(t) = p ° (T)O (T, t),	 tk < t < T

P' (ti)	 P° (ti) + ai[g3 x+Eqi o],	 i = 1, ...,k

P , (t) = P°	 ti-1 < t ”- ti

Then (26) becomes



E[pt (0) + bo(ro x Ero e) ]8x(0) = 0.
,(29b)

-000
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(29a)
	

EP' (t)[f(X(t).u(t),t) - f (AX (t),u(t),t)I < 0

Furthermore, w.p.l.

(3oa) E(p' (t)[f(X(t),u(t),t) - f(x(t),u(t),t)]j-Qt) < 0doop

(30b) E([p1 (0) + ao(go
, x+Ero e)]I .Qo) a 0.

,

Proof. The proof of (26) follows from Theorem 1 using the

identification of the Qi,Ri with the ci,ji in Theorem 1, and the fact

that K is a first order convex approximation, by Theorem 2. Also the

linear operator (acting on 5x(T)), E[P+ X(xT)]'8x(T), is identified with

co . Equation (29) follows from (26) upon using the substitution (27),

(28). To prove (30a) suppose that (30a) is violated on a ,fit measurable

set Bt with P(Bt) > 0 Define ù(t) = u(t) on Bt, u(t) = u(t) on

n - Bt . Then (29a) is violated with the admissible u(t) replacing the

u(t) there. A similar proof yields (30b). Q.E.D.

7. Extensions to Closed Loop Systems.
Thus far the admissible u(w,t) are defined to be measurable

on the a priori fixed v-algebra ,fit. If the admissible controls are

assumed to depend explicitly on the state x - or its past values,

i.e., u(cu,t) = u(x(t),t) or u(w,t) = u(xs ,s < t, ►,), then a very

similar development can be carried out provided either the Lipschitz
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condition

Ju(x,t) - u(y,t)l < Kjx-yj

or the generalized Lipschitz ^ondition, where x  denotes the function

with value xt (s) = x (t-s), s > 0,
UM

M
l u (xt, t ) - u (Yt, t) .^ f I x (t- s ) - Y(t- s ) ( dm(s)

0

for e, bounded measure m(-) hold. + Indeed, with the use of the perturbed

controls and a convex cone K of the type used in Theorem 2, we obtain

Theorem 3, with the exception that the x terms in the y E,, (t) and

O(t, ,r) equations are replaced by x + fu •ux . In particular, let the

data available to the control at time t be g(x(t),t), where g(x,t)

is a BorelrTunction satisfying (31) and lg(x,t)l 2 < Ko (l+lxl 2 ). Let

the class of admissible controls U be the family of Borel functions

u(g,t) with values u(g(x(t),t),t) and which satisfies (31), and which

has values in *t	 at time	 t. Assume the last two sentences of (I-1)

and that (I-2) holds for each such	 u. The convex cone is composed of

elements with values (for almost all s)

0(t,0)ax(o) + ^(t,g)[f(XCg),uCgCXCs),$),$),S) - f(X(^),Cg(XC$),$),^),$)]•

It is supposed that there is a continuous function u(g,t) ratifying

(31) with ~ (g) t) a *t for all g and 1u(g,t)l 2 < Ko(l+lgl2)
^.k

+For more detail on the more general stochastic differential delay system;

see [15].

..g
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such that u(g,$) u(g,$). (This is not a significant restriction.)

Let ui (g,t) satisfy the conditionion u above and reduce to

u(g' a i) at t = s i . In (10), let uE..(co,t)	 ui(g(x(t),t),t) in

li (eN). Then, under the addit-..onal conditions (14-5), Theorem 3 holds

with the conditioning on 	 replaced by conditioning on g(x(t),t).

We have not given more details on the extensions, since attempts to

extend the method to a more general class af controls whose mombers

may be discontinuous in the state, have failed so far.
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